Teaching-Learning-Based Optimization of Neural Networks for Water Supply Pipe Condition Prediction

نویسندگان

چکیده

The bulk of water pipes experience major degradation and deterioration problems. This research aims at estimating the condition in Shattora Shaker Al-Bahery’s distribution networks, Egypt. developed models involve training Elman neural network (ENN) feed-forward (FFNN) coupled with particle swarm optimization (PSO), genetic algorithms (GA), sine cosine algorithm (SCA), teaching-learning-based (TLBO) algorithm. For network, inputs to these are pipe characteristics such as length, wall thickness, diameter, material, lining coating, surface type, traffic distribution, cathodic protection, flow velocity, c-factor. Al-Bahery data gathered include age, depth, thickness. Three assessment criteria used evaluate suggested machine learning models, namely index agreement (IOA), correlation coefficient (R), root mean squared error (RMSE). results reveal that coupling FFNN TLBO outperforms other prediction models. Therefore, FFNN-TLBO model can be a valuable tool for simulating condition. study could help municipality allocate available budget effectively plan required maintenance rehabilitation actions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bearing Condition Prediction Using Enhanced Online Learning Fuzzy Neural Networks

Machine health condition (MHC) prediction is useful for preventing unexpected failures and minimizing overall maintenance costs since it provides decision-making information for condition-based maintenance (CBM). This paper presents a novel bearing health condition prediction approach based on enhanced online sequential learning fuzzy neural networks (EOSL-FNNs). Based on extreme learning machi...

متن کامل

A Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses

In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...

متن کامل

Optimizing Intermittent Water Supply in Urban Pipe Distribution Networks

In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. Here, we develop a computational ...

متن کامل

Condition-based Maintenance Optimization Using Neural Network-based Health Condition Prediction

Artificial neural network (ANN) based methods have been extensively investigated for equipment health condition prediction. However, effective condition based maintenance (CBM) optimization methods utilizing ANN prediction information are currently not available due to two key challenges: (1) ANN prediction models typically only give a single remaining life prediction value, and it is hard to q...

متن کامل

the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students

هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2021

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w13243546